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Abstract 

This paper discusses experimental results achieved by using mixed initiative robot behavior to 
address the challenges of detecting and marking buried metal landmines. Mission requirements 
pertaining to communication bandwidth and operator workload precluded conventional 
approaches to communication and tasking. Instead, a framework for sharing control and 
communicating “behavior intent” was developed to coordinate activities of intelligent unmanned 
air and ground vehicles. To alleviate dependence on global positioning, collaborative tasking 
tools were developed that use common reference points in the environment to correlate disparate 
internal representations (e.g. aerial imagery and ground-based occupancy grids). The behaviors 
allow each team member to act independently while communicating environmental features and 
task intent at a high level. Results show that the resulting system produced a significant decrease 
in task time to completion and a significant increase in detection accuracy and reliability when 
compared to the current military baseline. As required, the experiment was accomplished 
without dependence on global positioning or continuous network communication. These findings 
indicate that by providing an appropriate means to interleave human and robotic intent, mixed 
initiative behaviors can address complex and critical missions where neither teleoperated nor 
autonomous strategies have succeeded.  
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Introduction 

Landmines are a constant danger to soldiers during conflict and to civilians long after conflicts 
cease, causing thousands of deaths and tens of thousands of injuries every year. It is estimated 
that more than 100 million landmines are emplaced around the world and, despite humanitarian 
efforts to address the problem more landmines are being emplaced daily than are being removed 
[38]. Often humans are used to perform de-mining at great risk to life and limb. The task is 
extremely dangerous and tedious and human performance tends to vary drastically depending on 
factors such as fatigue, training, and environmental conditions. 
 
It has long been thought that landmine detection is an appropriate application for robotics 
because it is a dull, dirty, and dangerous task [2, 24]. However, the reality has been that the 
critical nature of the task demands a reliability and performance that neither teleoperated nor 
autonomous robots have been able to provide [23]. Autonomous strategies based on assumptions 
of accurate positioning and sensor information have proven unreliable. On the other hand, 
teleoperated strategies are severely limited by the fact that the combined demands of navigation, 
sweep coverage and signal interpretation severely overload the human operator. 
 
In response to these shortcomings, we will present a mixed-initiative approach that has been 
developed that allows air and ground vehicles as well as remote human operators to work 
together to accomplish a countermine mission. Researchers at the Idaho National Laboratory 
(INL), working with Carnegie Mellon University (CMU), and the Space and Naval Warfare 



Systems Center (SSC), San Diego have developed a system that combines the bird’s eye 
perspective from an unmanned aerial vehicle with behavior-based autonomous search and 
detection capabilities on a ground robot to identify and mark buried landmines. The effectiveness 
of the resulting system was rigorously evaluated by the Army Test and Evaluation Command 
(TECO) and by the U.S. Army Maneuver Support Center (MANSCEN) at Ft. Leonard-Wood. 
 
Although the formal countermine mission requirements made no explicit reference to the level of 
autonomy required for the task, the research reported here indicates that operational success was 
possible only through the use of a mixed-initiative approach that defined the responsibilities and 
roles of the human, air vehicle, and ground vehicle. It is important to note that humanitarian de-
mining is significantly different from military demining. Antonic, Ban, and Zagar point out that 
“Military needs to breach a narrow path through the minefield as fast as possible and with 
acceptable loses due to missed mines. On the opposite side, humanitarian demining requires 
100% detection and removal of all mines on large area.” [2]. This research uses information from 
humanitarian de-mining but the task itself is based on military demining.  
 
The paper proceeds as follows. We will first discuss background on using robots for 
humanitarian demining and mixed initative. Then We will discuss the mission requirements and 
show how they evolved based on available technology. We then present the solution to the 
countermine problem on unimproved dirt roads. The system used to solve the countermine 
problem is then presented and we discuss the experiment and results. Finally, the paper is 
concluded and directions of future work are provided. 
 
 
Background 
 
Many research papers describe the challenges and requirements of humanitarian demining along 
with suggesting possible solutions [2, 24]. Efforts to improve robotic de-mining have resulted in 
the design of a new system, but have left that system unproven in physical environments [3, 10, 
14, 20, 28, 32]. The development of systems without proving their usefulness in domains leaves 
one to question how effective the solution is in a real situation. In fact, Trevelyan believes that 
robots cannot be a solution to humanitarian demining because the sensor technology is not 
sufficient, there are huge varieties of land mines that defy automated solutions, and robots are 
likely to be too expensive for practical operations in some contries [41]. It is true that automated 
solutions will be difficult to come by, but perhaps, the focus is on making systems rely too much 
on automation when a better approach might be to create a system that requires some human and 
some robot initative. 
 
Many scientists have pointed out that it is clear that benefits are to be gained if robots and 
humans work together as partners [13, 21, 35, 37]. To successfully accomplish this, the robot 
must have some level of automation or else it would simply be a remote-controlled vehicle that 
extends the capabilities of the operator but not have initiative of its own.  
 
Parasuraman et al. observe that “automation does not merely supplant but changes human 
activity and can impose new coordination demands on the human operator” [30]. They also note 
that when designing human robot systems, it is important to consider which system functions 



should be automated and to what extent. Steinfeld [40] also comments that it would be 
particularly useful to know the the ‘optimal’ autonomy state for a given task. Determining good 
levels of robot autonomy for a particular task is an important decision that is often approached by 
asking which skills the operator and robot have then dividing the task accordingly [19, 31, 35]. 
The appropriate use of autonomy may stem from an understanding of how and why autonomy 
behaves [29, 39]. Other views about how the trust of an autonomous robot can be established 
include making a reliable system, and making the decision processes of the robot more 
transparent [5]. 
 
One solution to provide the appropriate level of autonomy is to provide adjustable autonomy or 
sliding scale autonomy [4, 6, 11, 15, 16, 33, 36]. These approaches enable the operator to change 
the level of autonomy with which the robot operates. The challenge with such an approach is that 
it is often difficult for the operator to know which level of autonomy is the best for the current 
situation that the robot is in. In fact, this solution requires the operator to have very good 
situational awareness of the robot, the task, and the environment in order to give correct changes 
in autonomy at the correct time. This places a huge responsibility on the sholders of the end user 
as they are required to understand all the levels of automation within the entire system, how to 
activate and switch between autonomy levels, and when each level is particularly applicable. 
 
In previous user studies it was observed that, for a given task, a particular interface design [25–
27] or autonomy configuration [6–8] provided better results than another configuration. 
Moreover, when end users were given a complete system with multiple, adjustable levels of 
autonomy and different interface designs, it was difficult for novice robot operators to fully grasp 
the posibilities of the system or even understand what particular aspects were most beneficial to 
their success [43]. 
 
Towards this end, our solution has been to develop a fixed mixed-initative strategy that requires 
an understanding of the task and the responsibility of each of the agents in the system 
beforehand, such that when the task is performed, the tasks for each agent are understood. This 
approach is different from traditionaly mixed-initative approaches in HCI where attempts to 
solve a problem occur gradually through collaboration between a human and the system [1, 17, 
18, 34]. 

 

Mission Requirements 

The purpose of this research was to evaluate the effectiveness and suitability of an Autonomous 
Robotic Countermine (ARCM) System to proof a 1-meter dismounted lane by searching for, 
marking, and reporting detected landmines and marking the boundaries of the proofed lane.  The 
intent was to provide the current force with an effective alternative to manned dismounted lane 
countermine operations. MANSCEN determined that although accurate digital marking of 
landmine locations within a terrain map was desired, accurate physical marking of the mine 
locations was considered essential for the mission requirements.  

 

To develop a successful solution required a complete understanding of the end-user’s goals and 
requirements.  This was accomplished with over two years of dialogue with MANSCEN to 



develop and refine the mission requirements based on capabilities and limitations of various 
technologies.  Furthermore, numerous conversations with the Night Vision and Electronic Sensor 
Directorate (NVESD) at Ft. Belvoir were required to discuss the capabilities and limitations of 
current sensor technologies. 

 

Previous studies by MANSCEN had shown that real-world missions would involve limited 
bandwidth communication, inaccurate terrain data and sporadic availability of GPS. 
Consequently, task constraints handed down from MANSCEN demanded minimal dependence 
on network connectivity (e.g. wireless Ethernet), centralized control (e.g. off-board motion 
planning), global positioning (GPS), and accurate a priori terrain data.  

MANSCEN requirements also emphasized the need for reduced operator workload and training 
requirements. The military operational requirements document (ORD) specified that within the 
future combat system (FCS) unit of action, there would no longer be dedicated engineers focused 
on the countermine mission; instead, any soldier within the unit of action should be able to task 
the system to prove an area or lane from a graphical representation of the local environment. 

 A final requirement was that the robotic system be able to handle cluttered outdoor 
environments. Although the robot platforms and sensor suite were important considerations, the 
goal of this effort was not focused on a particular robot platform or a particular countermine 
sensor; rather, the stated goal was to “provide portable re-configurable tactical behaviors to 
enable teams of small UGVs and UAVs to collaboratively conduct semi-autonomous 
countermine operations.”  

 

Mission Scenario 
A fundamental challenge with the strict requirements was how to provide a means for the user to 
task the robot without dependence on either a priori terrain data or global positioning. The 
reason this was difficult is because there is no simple correlation between the operators 
understanding of the physical world and the robot’s digital representation of the world.  To 
operate without dependence on global positioning, the ground robot had the ability to build a 
digital, occupancy map that could be shared with the human operator.  This provided some 
context for the operator to task the robot however, the context was limited to the parts of the 
environment that had already been explored by the robot.  To improve the operator’s ability to 
task the robot in previously unexplored areas, it was determined that an unmanned air vehicle 
would be used to survey surrounding terrain, locate potential minefields and provide imagery 
that could be used for tasking and monitoring while the ground robots perform their search and 
detection mission.   

The mission scenario which emerged included the following task elements. 

a. Deploy a UAV to survey terrain surrounding an airstrip. 

b. Analyze imagery to identify possible minefields. 

c. Use common landmarks to correlate UAV imagery & UGV occupancy map 

d. UGV navigates autonomously to possible minefield  

e. Perform UGV search behavior to physically and digitally mark mines. 



f. Mark dismounted lane through suspect terrain. 

This mission scenario posed an interesting mixed-initiative challenge. The military requirement 
dictated “semi-autonomous control,” meaning that the human must be kept in the loop, but that 
time spent at the controls should be minimized. No specific requirement was given regarding the 
nature of tasking or monitoring or what the operator was required to do, just that they had to be 
there. To orchestrate the operator and robotic initiative, it was necessary to ask some basic 
questions for each task element. First, it was necessary to consider performance and empirically 
assess whether the operator or robot was better for each task element. Secondly, it was necessary 
to consider the workload costs for the operator and the robot since one of the mission 
requirements was to minimize operator workload. Lastly, the benefit to using the operator or 
robot for the task was compared against the cost of not using the operator or robot for the task.  

 Efforts to answer these questions significantly influenced the mixed-initiative framework 
employed. For example, the visual analysis in element (b) was originally intended to be an 
automated process, using change detection software that could analyze suspect terrain with no 
human intervention. In reality, real world experimentation showed that the change detection 
software, when deployed from unmanned air vehicles, could not reliably ascertain the possible 
minefield locations. Instead, it was determined that human image understanding was a superior 
asset and required minimal operator time. Consequently, the mission scenario was modified to 
allow the human to identify the possible minefields within the mosaiced aerial imagery and task 
the UGV with either a single click to specify the terminus of a lane or by specifying the vertices 
of a polygon around a suspected minefield.  

 The mixed-initiative used to solve the mission requirements was based on determining 
what tasks should be performed by each of the agents then developing the system to support the 
performance of the agents for those tasks.  Other approaches to mixed-initiative are more 
interested in a collaboration or cooperative problem solving between agents where a robot and 
human hold a dialog about a problem [13].  These solutions are most useful when the intelligent 
system cannot know the operator’s intentions or the goal of the task [18].  However, in this 
particular research, the task was well defined and the goals well defined.  Therefore, our use of 
mixed-initiative has been to define the tasks for the different agents. 

 

System Components 

Our solution for the countermine experiment discussed here builds on several years of spiral 
development to evaluate and improve robot behaviors and interface tools in support of remote 
vehicle operation. The solution is applicable because it supports the MANSCEN requirements of 
minimal dependence on networking, centralized control, GPS, and prior information about the 
environment. A series of human participant studies have demonstrated that robust robot 
behaviors and interface methods can provide reduction in operator workload, operator error, 
communication bandwidth, and can increase task efficiency and the operator’s subjective feeling 
of control [8]. However, previous experiments were limited primarily to novice users and basic 
navigation and search tasks. The countermine mission offers an opportunity to apply the results 
and experiences from our previous user-studies and development on robot behaviors and 
interface capabilities to a complex, end-to-end mission. To accomplish this in a rigorous field 
experiment, it was necessary to utilize vehicle platforms, communications, and sensor payloads 
that could meet the military requirements without assuming away any element of the task.  



 

Air Vehicle Development  

The air vehicle of choice was the 
Arcturus T-15, a low cost, fixed wing 
aircraft that can maintain long duration 
flights and carry the necessary video 
and communication modules. For the 
countermine mission, the Arcturus was 
equipped to fly two hour 
reconnaissance missions at elevations 
between 200 and 500ft.   

A spiral development process was 
undertaken to provide the air vehicle 
with autonomous launch and recovery 
capabilities as well as path planning, 
waypoint navigation and autonomous 
visual mosaicing. An air-powered 
catapault launch system was developed 
that allows autonomous deployment of 
the air vehicle. After launch, a waypoint list is executed which allows the air vehicle to fly a 
coverage pattern over the airstrip and autonomously collect and mosaic real-time overhead aerial 
imagery. Unfortunately, the mosaiced imagery was not accurate enough to meet the requirements 
for this mission; therefore, single images were used to correlate the visual imagery with the robot 
occupancy grid.  

Ground Vehicle Development 

Carnegie Mellon University 
developed two ground robots for this 
effort which were modified 
humanitarian demining systems 
equipped with inertial systems, 
compass, laser range finders and a low-
bandwidth, long range communication 
payload. A MineLab F1A4 detector, 
which is a standard issue mine detector 
for the U. S. Army, was mounted on 
both vehicles along with an actuation 
mechanism that can raise and lower the 
sensor as well as scan it from side to 
side at various speeds. A force torque sensor was used to calibrate sensor height based on 
sensing pressure exerted on the sensor when it touches the ground. The mine sensor actuation 
system was designed to scan at different speeds to varying angle amplitudes throughout the 
operation. SPAWAR developed a compact marking system that dispenses two different colors of 
agricultural dye. Green dye was used to mark the lane boundaries and indicate proved areas 
while red dye was used to mark the mine locations. The marking system consists of two dye 

Figure 2: Countermine robot platform 

Figure 1: The Arcturus T-15 airframe and 
launcher 



tanks, a larger one for marking the cleared lane and a smaller one for marking the mine location. 
The system also included pumps, hoses and nozzles for dispensing the dye, and a control system 
that linked to the INL Robot Intelligence Kernel (RIK).  

 
The Robot Intelligence Kernel (RIK) supports behaviors for navigation, search and detection 
[12]. The behaviors include reactive primitives such as guarded motion and obstacle avoidance 
and increase in complexity to deliberative capabilities such as path planning and area coverage. 
Throughout this spectrum, the level of autonomy that is possible increases with the layering of 
behaviors. For instance, to accomplish the overall countermine search behavior, the RIK must 
arbitrate between obstacle avoidance, waypoint navigation, path planning and mine detection 
coverage behaviors, all of which run simultaneously and compete for control of the robot. 
(Charts in Appendix A and B illustrate the interactions between components of the RIK.) 
 
The RIK provides adjustable autonomy including the four modes of interaction shown in Figure 
3: High-Level Tasking Mode, Shared Mode, Safe Mode and Teleoperation [12]. Teleoperation 
involves direct human control where the robot takes no initiative. Safe Mode where the robot 
takes initiative only to protect itself, Shared Mode where the human and robot may both take 
initiative, and High-Level Tasking Mode where the human may only provide high level input 
throughout the task. The robot may also be configured for a “fully autonomous” mode such that 
the robot, upon startup, proceeds to explore the environment and detect mines with no human 
input whatsoever. Note that each of these modes may be used to accomplish the countermine 
task. In fact, the dynamic autonomy offered by the RIK provides users with an ability to task the 
system differently depending on the task constraints such as available operator workload and 
communication connectivity. 



 
 

 
 
The chart shows how these different levels of interaction provide specific modes of mixed-
initiative control. An important aspect of this research was determining how to combine initiative 
from the human and robot. At times, the robot must be able to refuse human control such as 
when the mine sensor is engaged and the human is controling the robot motion directly, the robot 
should be able to limit its speed in order to safely detect mines and avoid obstacles. An important 
goal was to facilitate sharing responsibilities between robot and operator such that the user could 
provide input without interfering with the robot’s ability to navigate, avoid obstacles, plan paths, 
and detect land mines. For this countermine experiment, High-Level Tasking Mode was 
configured to limit the possibility for human input to disrupt robot behaviors such as area 

Figure 3: Four modes of operator control and the behaviors that support them 

Figure 4: Initiative Chart 



coverage or mine marking. Previous studies using High-Level Tasking Mode indicates that 
appropriately constraining human initiative can improve task efficiency, reduce operator 
workload and limit instances of operator confusion and frustration [3]. Supporting mixed-
initiative in this way actually increases users’ feeling of control by taking control away from 
them at the right times. In this sense, the goal is not to blindly “mix” initiative, but rather to 
define responsibilities that avoid conflict and optimize task allocation. 
  

Interface Development 

For the majority of robotic operations, video remains the primary means of providing 
information from the remote environment to the operator [9].  Woods et al. describe the process 
of using video to navigate a robot as attempting to drive while looking through a ‘soda straw’ 
because of the limited angular view associated with the camera [42].  If teleoperation is 
problematic for simple navigation tasks, it is even less appropriate for the countermine mission 
where navigation is only one aspect of a complex operation.  
 
 
Unlike traditional interfaces that require transmission of live video images from the ground robot 
to the operator, the representation used for this experiment uses a 3D, computer-game-style 
representation of the real world constructed on-the-fly [26]. The digital representation is made 
possible by the robot implementing a map-building algorithm and transmitting the map 
information to the interface. To localize within this map, the RIK utilizes Consistent Pose 
Estimation (CPE) developed by the Stanford Research Institute International [23]. This method 
uses probabilistic reasoning to pinpoint the robot's location in the real world while incorporating 
new range sensor information into a high-quality occupancy grid map. When features exist in the 
environment to support localization, this method has been shown to provide approximately +/- 
10 cm positioning accuracy even when GPS is unavailable.  
 



 
The 3D representation also maintains the size relationships of the actual environment and the 
robot, helping the operator understand the relative position of the robot in the real world. By 
changing the zoom, pitch and yaw of the digital representation, the operator can use multiple 
perspectives, including egocentric views that show the environment from the perspective of a 
particular robot as in Figure 5, to exocentric views that show a top-down view of the entire 
environment as in Figure 6.  Previous HRI studies at the INL have shown that different 
perspectives can be used to support different autonomy modes [8]. 
 

The default configuration of the interface used to interact with the ground robots consists of a 
single touch screen display containing re-sizeable windows as shown in Figure 5. The upper 
right-hand window contains sensor status indicators and controls that allow the operator to 
monitor and configure the robot’s sensor suite as needed.  The lower right-hand window pertains 
to movement within the local environment and provides indications of robot velocity, 
obstructions, resistance to motion, and feedback from contact sensors.  The interface indicates 
blockages that impede motion in a given direction as red ovals next to the iconographic  

Figure 5: The Operator Control Interface is comprised of a number of windows 
displaying information about the robot and its environment, including an easy to use 
computer-game-style interface. 



representation of the robot wheels. Since the visual indications can sometimes be overlooked, a 
force feedback joystick was also implemented to resist movement in the blocked direction. The 
joystick vibrates if the user continues to command movement in a direction already indicated as 
blocked. At the far right of the window the user can select between different levels of robot 
autonomy. 

 

The interface supports the ability to input aerial imagery into the 3D window. The interface will 
automatically correlate geo-referenced imagery with the robot occupancy grid if GPS is available 
on the robot. However, countermine requirements stated that geo-referenced imagery may not be 
available. Even with geo-referenced imagery, real world trials showed that the GPS based 
correlation technique does not reliably provide the accuracy needed to support the countermine 
mission. In most cases, it was obvious to the user how the aerial imagery could be nudged or 
rotated to provide a more appropriate fusion between the ground robot’s digital map and the air 
vehicle’s image. As a result, correlation tools were developed that allow the user to select 
common reference points within both representations. Examples of these common reference 

Figure. 6: The Interface above shows a seamless fusion of UGV terrain mapping, GPS 
and real-time aerial imagery from an autonomous unmanned air vehicle. 



points include the corners of buildings, fence posts, or vegetation marking the boundary of roads 
and intersections. In terms of the need to balance human and robot input, it was clear that this 
approach required very little effort from the human (a total of 4 mouse clicks) and yet provided a 
much more reliable and accurate correlation than an autonomous solution. 

To facilitate initiative throughout the task, the interface must not only merge the perspectives of 
robotic team members, but also communicate the intent of the agents. For this reason, the tools 
used in High Level Tasking were developed which allow the human to specify coverage areas, 
lanes or target locations. Once a task is designed by the operator, the robot generates an ordered 
waypoint list or path plan in the form of virtual colored cones that are superimposed onto the 
visual imagery and map data. The placement and order of these cones updates in real time to 
support the operator’s ability to predict and understand the robot’s intent. Using a suite of click 
and drag tools to modify these cones the human can influence the robot’s navigation and 
coverage behavior without directly controlling the robot motion.  

Experiment 

To test the proposed system and the mission requirements, an experiment was conducted October 
20-28, 2005 at the INL’s UAV airstrip by personnel from the US Army MANSCEN and the 
TECO, both based at Ft. Leonard Wood, Missouri. The U.S. Army TECO authored the 
experiment plan, performed the field experiments and certified all data collected. The experiment 
consisted of repeated trials of a dismounted route proving task, and data collected included 
measurements of human, robot and overall team performance of the resulting system. Proofing a 
dismounted lane required the robot to navigate a path to a target location while physically and 
digitally marking detected mines and the boundaries of the searched lane. A test lane was 
prepared on a 50 meter section of an unimproved dirt road near the INL UAV airstrip because 
the wheeled UGV’s cross country mobility is limited. Six inert A-15 anti tank (AT) landmines 
were buried on the road between six and eight inches deep. Note that six landmines in a 50 meter 
section is considered a high mine concentration. Sixteen runs were conducted with no obstacles 
on the lane and 10 runs had various obstacles scattered on the lane such as boxes and crates as 
well as sagebrush and tumble weeds. 
 
Procedure 
The robot was prepared for operation at the beginning of each trial. Each trial consisted of the 
operator positioning the robot at the starting point of the lane, manually setting the mine sensor 
to the correct height, and starting the mine scanning and marking behaviors on the robot. Since 
the repeated use of colored dye would produce confusion regarding the marks on the ground, 
water was used instead of dye throughout the trials. As the robot proceeded, test personnel 
following the robot placed poker chips at the location of each wet spray mark with red poker 
chips. These poker chips allowed personnel to accurately measure distance from the center of the 
dye spray to the center of mine as shown in Figure 7. The water mark then dried before the next 
trial. Throughout the experiment all mine locations reported to the OCU were checked and a 
copy of the data log and a screen shot of the markings from the OCU were saved. A photograph 
of each mine and their location was taken and a video of each run was recorded. Data sheets 
recorded meteorological data, mine marking errors, missed mines, false detections, and other 
comments from those conducting the experiment. After the robot had completed its mission, it 
was driven back to the start point by the operator. Maintenance was conducted on the robot 



Figure 7:  Examples of Mine Marking and Burying a Mine 

between trials. At the conclusion of the trial the distance from each mine mark to the center of 
the mine was measured and recorded.  

 

 

 

 

 

 

 

 

 

Results 

There were four criteria to the tested requirements in this experiment: finding mines, marking 
mines, reporting mines, and marking proofed lanes. During the 26 runs executed during the 
experiment the robot correctly detected 124 mines. Over the course of the experiment, seven 
mines in the lane were not detected. The overall success rate for detecting mines was 95%. Of 
the seven mines not detected two were due to a miscalibration of the height of the sensors, two 
were due to low battery levels on the sensor, and three were not detected during sharp turns to 
avoid obstacles.  All missed mines were at or near the edge of the proofed lane. ARCS had a 
single false detection during all the runs. One mine was detected and reported twice, once on the 
leading edge of the mine and once on the trailing edge. This gives a false detection rate of <1%. 
 
All of the mines detected by ARCM System were physically marked on the ground. The distance 
between the center of the physical mark and the center of the mine was measured for 91 mines as 
shown in Appendix C.  The average marking error was 12.67 cm with a standard deviation of 
8.56 cm. The mine diameter was 33.4 cm. For each of the trials, the proven lane was marked in 
the physical and digital environments as shown in Figures 8 and 9. 
 
Of the 124 mines detected only one mine was not digitally reported to the OCU, the remainder 
rest were automatically reported and logged. A text file with the UTM coordinates of each mine 
was logged in a separate run file and screen shots of each run were made showing the location of 
each mine as it relates to the robots internal map (see Figure 8).  
 
The ARCM System was successful in all runs in autonomously negotiating the 50 meter course 
and marking a proofed 1-meter lane. The 26 runs had an average completion time of 5.75 
minutes with a 99% confidence interval of +/- 0.31 minutes. The maximum time taken was 6.367 
minutes. Interestingly, the presence of obstacles on the course seemed to improve the speed at 
which the robot performed. Closer examination of the data showed that the speed up was not due 



to the obstacles, but rather to the fact that the trials with obstacles were performed on a wider 
stretch of road. The navigation behaviors in the RIK allowd the robot to move faster since the 
boundaries of the road were further apart. On the 16 runs without obstacles the average time to 
complete was 6.058 minutes with a 99% confidence interval of 0.216 minutes. The 10 runs with 
7 obstacles on the course showed an average completion time of 5.267 minutes with a 99% 
confidence interval of 0.585 minutes.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 9: Proofed Lane Marking 

 
 

Fig. 8: Mine and Proofed Lane Display on OCU. 



When comparing the robot to current military operations, the MANSCEN at Ft. Leonard Wood 
reports that it would take approximately 25 minutes for a trained soldier to complete the same 
task accomplished by the robot, which gives about a four-fold decrease in cycle time without 
putting a human in harm’s way. Furthermore, a trained soldier performing a counter-mine task 
can expect to discover 80% of the mines.  The robotic solution raises this competency to 95% 
mine detection. 

Another interesting finding pertained to human input is that the average level of human input 
throughout the countermine exercises was less than 2% when calculated based on time. The 
TECO of the U.S. Army indicated that the ARCM System achieved “very high levels of 
collaborative tactical behaviors.” When the MANSCEN applied the “Autonomy Levels for 
Unmanned Systems” rubric, which includes indices for operator interaction, environmental 
difficulty and task complexity, to evaluate the overall autonomy of the system, a level of 8-9 was 
applied out of a possible 10. 

Conclusion 

The results of a rigorous, real-world experiment showed that the proposed autonomous robot 
countermine system performed admirably accurately marking, both physically and digitally, 124 
out of 131 buried mines in an average time of less than six minutes.  
 
While these results are encouraging, it is important to understand that the challenges of 
countermine operations have by no means been completely solved. One important caveat to the 
work reported here is that the mines used had a high metallic content. The need to find low-
metallic mines will require a more advanced sensor. Ongoing collaboration with the NVESD at 
Ft. Belvoir will result in a combined ground penetrating radar and electromagnetic induction 
sensor which could  be used in the next phase of this effort to improve mine sensing of low-
metallic mines. Another important caveat is that the robot platform used for the effort reported 
here does not meet the military’s need for ruggedization or for all-terrain mobility rather, the 
presented tests were performed on an “unimproved dirt path.” To accomplish the same task in 
cross-country terrain is also a subject of future work.  

Finally, the U.S. Army Engineer School indicated that the next phase of research should support 
a vertical float feature to maintain an exact height of the sensor head above the ground and that 
they would like to see more collaborative UAV functions including terrain data and uses as a 
communication relay. 
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APPENDIX C: A table showing mine marking accuracy for the first 91 mines found. 
 

Mine #1 
Marking 
cm Error

Mine #2 
Marking 
cm Error

Mine #3 
Marking 
cm Error

Mine #4 
Marking 
cm Error 

Mine #5 
Marking 
cm Error

Mine #6 
Marking 

cm    
Error

10 8 7 15 20 Miss
23 8 24 4 0 7
6 16 10 7 17 16
4 8 7 20 1 3
13 0 Missed 13 5 0
15 15 20 15 0 10
12 8 12 0 0 7
12 16 18 19 15 15
1 8 16 8 8 Missed
26 18 15 14 4 24
7 28 27 31 33 21
20 39 17 26 22 26
3 16 5 13 9 8
12 23 5 12 0 15
16 0 0 4 4 22
16 18 Missed 20 12 Missed

# of Marks 16 16 14 16 16 13
Average 12.25 14.31 13.07 13.81 9.38 13.38
St Dev 7.09 10.06 7.84 8.24 9.76 8.29
CI (+/-) 99% 5.22 7.41 6.31 6.07 7.19 7.02  
 
 
 
 
 
 
 
 
 

 


